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Abstract — The characteristics of asymmetric coupled
transmission lines are derived for the case of general anisotropic
coupling special cases of which are certain geometries of
anisotropic materials or from distributed active devices. In
addition to deriving the terminal characteristics for the uniform
coupled-line four-port case with anisotropic coupling, it is
shown that alternate equivalent expressions for the mode
impedances and admittances can be derived which have a
simplified form. These simplified expressions are useful when
examining specird cases where a good approximation can be
achieved by considering either a generalized anisotropic mutual
impedance or a generalized anisotropic mutual admittance.

I. INTRODUCTION

Coupled line topologies are employed in a wide range of

microwave and millimeter-wave circuits to provide signal

routing, and perform frequent y selective functions. Previous

analyses have dealt with geometries where the media is

inhomogeneous and the coupled lines are asymmernc [1-5] but

not where the coupling is of a general anisotropic form. The

general anisotropic case includes geometries involving
nonreciprocal material such as ferntes and also addresses the

situation of distributed active devices [6,7] such as field effect or
junction transistors.

In this paper a general asymmetric coupled line with

anisotropic coupling is studied and expressions are derived for

the propagation constants and characteristic admittances and
impedances in terms of the voltages and currents on the lines. It

is shown that expressions for the line impedances and

admittances can be formulated, which, in contrast to previously

published results, not only describe the more general anisotropic

coupling case but have a simplified algebraic form. Indeed, in

certain special cases, these expressions can be further simplified

and lead to a more intuitive description of the characteristic
coupled-line parameters. Similar to the case of isotropic

coupling, the modes correspond to linear combinations of the
voltages and currents on the lines. Unlike the case where the

coupling is bilaterrd, the four-port admittance matrix no longer

exhibits the symmetry of the bilateral-coupling case.

II. COUPLED-LINE ANALYSIS

The circuit description of the coupled lines assumes that the

differential voltages and currents along the transmission line are

linear functions of the currents and voltages, respectively, along

both lines. Thus, it is assumed that the relationships between

the currents, il and i2, and the voltages, VI and V2, for two
coupled transmission lines can be written as:

dil di2

-z
= Yllvl + Y12V2

-z
= Y21VI +- Y22V2 (2)

where zii (i = 1,2) and yii (i = 1, 2) are the self-impedances and
self-admittances per unit length of line i in the presence of line j

(j= 1, Z;j # i). Similaly, zij (ij = 12, .21) and Yij (U = 12, 21)
are the mutual impedances and mutual admittances per unit

length, respectively, between the lines.

This description allows for non reciprocal coupling between

the lines, i.e. energy can transfer from line 1 to line 2 differently
than from line 2 to line 1. Hence, this formulation not only

allows for certain orientations of nonreciprocal material such as
ferrites, but also maybe applied to situations where a distributed

active device provides coupling of the two transmission lines.
However, this does not allow for the most general case of non

reciprocal behavior since a wave traveling in the +x direction is

assumed to behave the same as one traveling in the -x direction.

An e.i~ t time dependence and an x dependence of the voltages

and currents given by e~yx is assumed.

A. Coupled Voltage Equations

After differentiating (1) and substituting with (2) the
following set of coupled voltage equations results:

(y2 - a~~)vj + a~zv~ = O azlvl + (72 -az)vz = O (3)

where

aij = Z@Ij i_ Zi2y2j (4)

~us, the four roots of the characteristic equation are given by:

~~z = ~ [all+ a22 * d(all- a22)2 + 4a12u21 (5)

where the modes given by the propagation constant *YC
correspond to the forward and backward traveling in-phase
mode. Similarly, the modes given by the propagation constant

&yZ correspond to the antiphase forward and backward

traveling waves. The ratio of the voltages on the two lines can
be found from (3) and is defined by:

(6)

In the general case, all four waves will exist. Thus the voltages
on lines 1 and 2 may be written as:

VI = Aje-y”x+ Azeycx+AJe-%x+ &ey”X (7a)

V2 = AI R,< e ‘~%+ A2RVCe%x+ A3Rvn e ‘fix+ A4RVXe ‘“x (7b)
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By substituting (7a) and (7b) into either (1) or (2) the general
forms for the currents are given by:

il = Al Yl, e-~x-A2 Yle e~x+ A3 YIN e-y”%- A4 Y1. eyzx (8a)

iz = AI R,, Yzce-~x- AzRVCYzeeycx

+ A3RVZY2Ze ‘%X- A4 R,, Y2Zey~x (8b)

Ylc and Y2C are the characteristic admittances for the in-phase

modes on lines 1 and 2, respectively, while Ylz and Yzn are

the characteristic admittances for the anti-phase modes on lines 1
and 2, respectively. In the case where (7a) and (7b) are
substituted into (1), the admittances are given by:

In the special case where the coupling is bilateral (9) reduces to

the expressions derived by Tripathi.

If (7a) and (7b) are substituted into (2), then the expressions

for the admittances are given by:

Obviously these expressions for the characteristic admittances
must be equivalent. This can be shown through straightforward
algebraic manipulation. It should be noted, however that (10)
are somewhat simpler expressions than (9), and convey more
physical insight into the dependence of the coupling on the line
parameters.

B. Coupled Current Equations

In a manner analogous to that presented in the above
paragraph, an alternate approach is to differentiate (2) and
substitute with (1) to obtain the following set of coupled current
equations:

(y’ - bll)il + b,ziz = O b21il + (Y2 - b22)i2 = O (11)

where

btj = zlJYi~ + Z21Y12 (12)

Thus, the four roots of the characteristic equation are given by:

(13)

Although aij # bij the dispersion equation given by (13) is

identical to that given by (5). Indeed, this must be the case,
since the voltages and currents are just components of the same
electromagnetic wave. In a manner analogous to the above
definition of a voltage ratio, it is appropriate, in this case to
define the ratio between the currents flowing in line I and line 2.
The ratio of the currents on the two lines can be found from(11)
and is defined by:

RiC,Z= $
= (%. - bl~) = b21 (14)

1, c,~ b12 (xL - bd

Just as above, in the general case, all four waves will exist.
However, in the following the general form of the currents are

considered fiist. The currents on lines I and 2 may be written
as:

il = Ale-y=’+ A2eY’x+ A3e-Y”x+ ~ey~x (15a)

i2 = Al RiOe -?$x+ A2Ric e%x+ A3R,=e-ynx+ A4RiXer”x
(15b)

In an analogous manner, by substituting (15a) and (15b) into
either (1) or (2) the general forms for the voltages on the lines
are given by:

VI = AIZ1, e ‘~x-A2Zlce ~x+A3Z1Xe ‘Y”x- A4 Zlz e ‘“x (16a)

V2 z AI Rio Z2Ce-%’- A2RiC ZzeeycX

+ A3R,ZZZZ e ‘Y”x- A4R,. Zzne y. x
(16b)

where Zlc and Z2C are the characteristic impedances for the in-

phase modes on lines I and 2, respectively, while Zln and Z2Z

are the characteristic impedances for the anti-phase modes on
lines 1 and 2, respectively. In the case where (15a) and (15b)
are substituted into (1), the resultant expressions for the
impedances are given by:

In the case where (15a) and (15b) are substituted into (2), the
expressions for the impedances are given by:

Z1 = K,z(Yz2 - y~2Ri..~) Z2,,== b (YH - Y2A# (l ~,
C,71

Y11Y22- Y12Y21 Y1JY22- Y12y21

Obviously these expressions for the characteristic impedances
must not only be equivalent but must also be equivalent to the
reciprocals of the expressions for characteristic admittances
given by (9) and (10). This also can be shown through

straightforward algebraic manipulation. It should be noted

again, however that (17) are somewhat simpler expressions than

(18), and convey more physical insight into the dependence of
the coupling on the line parameters.

Thus, not only has the more general case of anisotropic

coupling been treated, it has been shown that there is a duality in

the forms of the expressions for the characteristic impedances

and admittances depending on the initial choice of the
formulation of the problem. Although all formulations must be

equivalent, it has been shown that the approach taken in the

development of the equations for the characteristic impedances

and admittances can yield expression which more clearly relate

the characteristic impedances and admittances to the circuit

elements of the coupled lines.

III. COUPLED-LINE FOUR PORT CIRCUIT

A general coupled line four-port is generally described by an

impedance or admittance matrix. If it is assumed that a uniform

couple&line section has a length ~ then the terminal voltages and

currents as shown in Fig. 1 are related by the four port

admittance matrix which follows from (7) and (8) and is defined

by:

Z=YV (19)

where
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I
-Y2CR,CR,= coth ~ (+ Y2~RVCRVZcoth yzl

Y=
R,c ! R,% Yz<R,CR,. csch E 1- YznR,CR.z csch yzl

YICR,, csch ~ 1- Ylz R.Ccsch yn 1

-Ylc csch K f+ Ylz csch yz C

-Y2CR,, csch K 1+ Y2ZR,z csch yz 1

Y2CR,C coth KC- Y2~R,n coth y= C

Ylc coth K 1- I’lz coth yn 1

It should be noted that, unlike for the case of bilateral coupling
derived by Tripathi [2], the four-port admittance is not
symmetric. This is not unexpected since the coupling
mechanism is assumed to be anisotropic.

Transmission line 1
14

\

v] V2 Transmission line 2

Figure 1. Generic representation of two coupled transmission lines
showing the voltage and current conventions for the derivation
of the four-port admittance matrix.

IV. SPECIAL CASES

The formulation presented above is applicable to a large class
of problems. However, there are several significant special
cases where substantial simplification of the expressions for the
characteristic parameters exists. The fiist of these cases is that
of bilateral coupling. In this case it can be shown that the

characteristic admittances of the modes on the lines reduce to the
expressions of Tripathi. The other special cases occur when

only mutual impedances or mutual admittances exist to provide
the coupling mechanism between the two lines.

A. Bilateral Coupling

Bilateral coupling between the two lines exists when the
coupling mechanism is isotropic or reciprocal. This implies that
the mutual impedances are equal (ZIZ = z.21 = zm) and that the

mutual admittances are equaf 0’12 = Y21 = Yin). BY inspection it
can be seen that (9) reduces to the expressions derived by

Yle coth ~ 1- YIZ coth Yz1

Y2CR,C coth x 1- Y2~Rvz coth YzC

-Y2, R.Ccsch x 1+ Y2ZR.n csch yzl

-Yl, csch z 1+ Ylz csch yn C

YlcR,, csch E 1- Yln R,c csch yn 1

Yz,R,CR,. csch z 1- Y2. R,z R,e csch yz 1

Y2CR.c R,. coth z 1+ Y2.RV. R,c coth yn 1

-YICR,= coth K 1+ YIZ R,C coth yn 1 I

(20)

Tripathi when the mutual admittances and impedances are equal.
From (6), (14), and the definitions of the mode characteristic
admittances it can be shown that

(21)

When the coupling is bilateral, a21 = b12 and all = bll and
hence

YI.,n = - y2.,&. % (22)

By inspection it can be seen that the four-port circuit admittance
matrix is not only symmetric under these conditions but is also
identical to the matrix derived by Tripathi.

B. Coupling Via iklutual Impedances only

Under conditions where the coupling between transmission
lines can be considered to occur only through the mutual
impedances, the expressions for the characteristic admittances
can be greatly simplified. The expressions given by (10) or (18)
yield the simplest form with the characteristic admittances
reducing to the self-admittance divided by the propagation
constanc

yicz . &
?% (23)

This situation includes the passive case where the coupling
between lines can be considered to occur only through the
magnetic field. In the isotropic passive case it is appropriate to
think of the coupling circuit element as a mutual inductance
between the two transmission lines.

C. f70upling Via A4utual Aa’mittances Only

Under conditions where the coupling between transmission
lines can be considered to occur only through the mutual
admittances, the expressions for the characteristic admittances
can be greatly simplified. The expressions given by (17) or (9)
yield the simplest form with the characteristic admittances
reducing to the propagation constant divided by the self-
impwkmce

y. .%
1.,. Zii

(24)

This situation includes the passive case where the coupling
between lines can be considered to occur only through the
electric field. In the isotropic passive case it is appropriate to
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think of the coupling circuit element as a mutual capacitance

between the two transmission lines.

D. Distributed An@ljier

Distributed amplifiers are coupled transmission lines with
anisotropic coupling provided by an active device such as a

MESFET. Typical circuit models for distributed amplifiers

employ the transistor y-parameters to model the coupling

between the gate and drain lines [6,7], In most cases the lengths

of the gate and drain lines are not equal which necessitates a

resealing of the line parameters [7]. The relationships between

the usual distributed amplifier model and the parameters of (1)

and (2) are given by:

211 = 21 (25)

z]~ = Z21 = o (26)

(27)

Yll = I/l + yll (28)

Y12 = y12 (29)

Y21 = ~Y21

Y22 = f&+&2)

(30)

(31)

where Zl, ~ and yl, ~ are the characteristic impedances of the

gate and drain lines, respectively. The per-unit length y-

parameters of the MESFET coupling network are given by yll,

Y12, ~I! and YZ2 and me related to the active device sm~l signal
equivalent circuit [7]. The scaling factor d2 / dl is the ratio of

the length of the drain transmission line to the gate transmission

line. An examination of (25) through (31) reveals that the
coupling, assuming this model of an active device, is a special
case of C as discussed above. Hence the characteristic
admittances can be found from (24).

V. CONCLUSIONS

In this paper the expressions were derived for the

propagation constants and characteristic admittances and

impedances of general asymmetric coupled lines with anisotropic

coupling. Similar to the case of isotropic coupling, it was

shown that the two modes correspond to linear combinations of

the voltages and currents on the lines. The anisotropic case

includes some situations involving nonreciprocal material such

as ferntes and also addresses the situation of distributed active
devices such as field effect or junction transistors as used in
distributed amplifiers. It was shown that, in contrast to
previously published results, expressions for the line
impedances and admittances can be formulated, which not only
describe the more general anisotropic coupling case but have a
simplified algebraic form which follows naturally from the
choice of solving either a set of coupled voltage equations or a
set of coupled current equations.

In cases where the coupling can be considered to be due to
only mutual impedances or mutual admittances, these
expressions were further simplified and led to a very intuitive
description of the characteristic coupled-line parameters. Unlike
the case where the coupling is bilateral, the four-port admittance
matrix, as expected, no longer exhibits the symmetry of the
bilateral-coupling case.
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